Data Structure and Algorithm Binary Search Trees
Definition
A Binary Search Tree data structure is a rooted binary tree, whose internal nodes each store a key (and optionally, an associated value) and each have two distinguished sub-trees, commonly denoted left and right. The tree additionally satisfies the binary search tree property, which states that the key in each node must be greater than all keys stored in the left sub-tree, and smaller than all keys in right sub-tree
Program
function Node(data) {
this.data = data;
this.left = null;
this.right = null;
}
function BinarySearchTree() {
this.root = null;
}
BinarySearchTree.prototype.add = function(data) {
var node = new Node(data);
if(!this.root) {
this.root = node;
} else {
var current = this.root;
while(current) {
if(node.data < current.data) {
if(!current.left) {
current.left = node;
break;
}
current = current.left;
} else if (node.data > current.data) {
if(!current.right) {
current.right = node;
break;
}
current = current.right;
} else {
break;
}
}
}
};
BinarySearchTree.prototype.remove = function(data) {
var that = this;
var removeNode = function(node, data) {
if(!node) {
return null;
}
if(data === node.data) {
if(!node.left && !node.right) {
return null;
}
if(!node.left) {
return node.right;
}
if(!node.right) {
return node.left;
}
// 2 children
var temp = that.getMin(node.right);
node.data = temp;
node.right = removeNode(node.right, temp);
return node;
} else if(data < node.data) {
node.left = removeNode(node.left, data);
return node;
} else {
node.right = removeNode(node.right, data);
return node;
}
};
this.root = removeNode(this.root, data);
};
BinarySearchTree.prototype.contains = function(data) {
var current = this.root;
while(current) {
if(data === current.data) {
return true;
}
if(data < current.data) {
current = current.left;
} else {
current = current.right;
}
}
return false;
};
BinarySearchTree.prototype._preOrder = function(node, fn) {
if(node) {
if(fn) {
fn(node);
}
this._preOrder(node.left, fn);
this._preOrder(node.right, fn);
}
};
BinarySearchTree.prototype._inOrder = function(node, fn) {
if(node) {
this._inOrder(node.left, fn);
if(fn) {
fn(node);
}
this._inOrder(node.right, fn);
}
};
BinarySearchTree.prototype._postOrder = function(node, fn) {
if(node) {
this._postOrder(node.left, fn);
this._postOrder(node.right, fn);
if(fn) {
fn(node);
}
}
};
BinarySearchTree.prototype.traverseDFS = function(fn, method) {
var current = this.root;
if(method) {
this['_' + method](current, fn);
} else {
this._preOrder(current, fn);
}
};
BinarySearchTree.prototype.traverseBFS = function(fn) {
this.queue = [];
this.queue.push(this.root);
while(this.queue.length) {
var node = this.queue.shift();
if(fn) {
fn(node);
}
if(node.left) {
this.queue.push(node.left);
}
if(node.right) {
this.queue.push(node.right);
}
}
};
BinarySearchTree.prototype.print = function() {
if(!this.root) {
return console.log('No root node found');
}
var newline = new Node('|');
var queue = [this.root, newline];
var string = '';
while(queue.length) {
var node = queue.shift();
string += node.data.toString() + ' ';
if(node === newline && queue.length) {
queue.push(newline);
}
if(node.left) {
queue.push(node.left);
}
if(node.right) {
queue.push(node.right);
}
}
console.log(string.slice(0, -2).trim());
};
BinarySearchTree.prototype.printByLevel = function() {
if(!this.root) {
return console.log('No root node found');
}
var newline = new Node('\n');
var queue = [this.root, newline];
var string = '';
while(queue.length) {
var node = queue.shift();
string += node.data.toString() + (node.data !== '\n' ? ' ' : '');
if(node === newline && queue.length) {
queue.push(newline);
}
if(node.left) {
queue.push(node.left);
}
if(node.right) {
queue.push(node.right);
}
}
console.log(string.trim());
};
BinarySearchTree.prototype.getMin = function(node) {
if(!node) {
node = this.root;
}
while(node.left) {
node = node.left;
}
return node.data;
};
BinarySearchTree.prototype.getMax = function(node) {
if(!node) {
node = this.root;
}
while(node.right) {
node = node.right;
}
return node.data;
};
BinarySearchTree.prototype._getHeight = function(node) {
if(!node) {
return -1;
}
var left = this._getHeight(node.left);
var right = this._getHeight(node.right);
return Math.max(left, right) + 1;
};
BinarySearchTree.prototype.getHeight = function(node) {
if(!node) {
node = this.root;
}
return this._getHeight(node);
};
BinarySearchTree.prototype._isBalanced = function(node) {
if(!node) {
return true;
}
var heigthLeft = this._getHeight(node.left);
var heigthRight = this._getHeight(node.right);
var diff = Math.abs(heigthLeft - heigthRight);
if(diff > 1) {
return false;
} else {
return this._isBalanced(node.left) && this._isBalanced(node.right);
}
};
BinarySearchTree.prototype.isBalanced = function(node) {
if(!node) {
node = this.root;
}
return this._isBalanced(node);
};
BinarySearchTree.prototype._checkHeight = function(node) {
if(!node) {
return 0;
}
var left = this._checkHeight(node.left);
if(left === -1) {
return -1;
}
var right = this._checkHeight(node.right);
if(right === -1) {
return -1;
}
var diff = Math.abs(left - right);
if(diff > 1) {
return -1;
} else {
return Math.max(left, right) + 1;
}
};
BinarySearchTree.prototype.isBalancedOptimized = function(node) {
if(!node) {
node = this.root;
}
if(!node) {
return true;
}
if(this._checkHeight(node) === -1) {
return false;
} else {
return true;
}
};
var binarySearchTree = new BinarySearchTree();
binarySearchTree.add(5);
binarySearchTree.add(3);
binarySearchTree.add(7);
binarySearchTree.add(2);
binarySearchTree.add(4);
binarySearchTree.add(4);
binarySearchTree.add(6);
binarySearchTree.add(8);
binarySearchTree.print(); // => 5 | 3 7 | 2 4 6 8
binarySearchTree.printByLevel(); // => 5 \n 3 7 \n 2 4 6 8
console.log('--- DFS inOrder');
binarySearchTree.traverseDFS(function(node) { console.log(node.data); }, 'inOrder'); // => 2 3 4 5 6 7 8
console.log('--- DFS preOrder');
binarySearchTree.traverseDFS(function(node) { console.log(node.data); }, 'preOrder'); // => 5 3 2 4 7 6 8
console.log('--- DFS postOrder');
binarySearchTree.traverseDFS(function(node) { console.log(node.data); }, 'postOrder'); // => 2 4 3 6 8 7 5
console.log('--- BFS');
binarySearchTree.traverseBFS(function(node) { console.log(node.data); }); // => 5 3 7 2 4 6 8
console.log('min is 2:', binarySearchTree.getMin()); // => 2
console.log('max is 8:', binarySearchTree.getMax()); // => 8
console.log('tree contains 3 is true:', binarySearchTree.contains(3)); // => true
console.log('tree contains 9 is false:', binarySearchTree.contains(9)); // => false
console.log('tree height is 2:', binarySearchTree.getHeight()); // => 2
console.log('tree is balanced is true:', binarySearchTree.isBalanced()); // => true
binarySearchTree.remove(11); // remove non existing node
binarySearchTree.print(); // => 5 | 3 7 | 2 4 6 8
binarySearchTree.remove(5); // remove 5, 6 goes up
binarySearchTree.print(); // => 6 | 3 7 | 2 4 8
binarySearchTree.remove(7); // remove 7, 8 goes up
binarySearchTree.print(); // => 6 | 3 8 | 2 4
binarySearchTree.remove(8); // remove 8, the tree becomes unbalanced
binarySearchTree.print(); // => 6 | 3 | 2 4
console.log('tree is balanced is false:', binarySearchTree.isBalanced()); // => true
binarySearchTree.remove(4);
binarySearchTree.remove(2);
binarySearchTree.remove(3);
binarySearchTree.remove(6);
binarySearchTree.print(); // => 'No root node found'
binarySearchTree.printByLevel(); // => 'No root node found'
console.log('tree height is -1:', binarySearchTree.getHeight()); // => -1
console.log('tree is balanced is true:', binarySearchTree.isBalanced()); // => true
console.log('---');
binarySearchTree.add(10);
console.log('tree height is 0:', binarySearchTree.getHeight()); // => 0
console.log('tree is balanced is true:', binarySearchTree.isBalanced()); // => true
binarySearchTree.add(6);
binarySearchTree.add(14);
binarySearchTree.add(4);
binarySearchTree.add(8);
binarySearchTree.add(12);
binarySearchTree.add(16);
binarySearchTree.add(3);
binarySearchTree.add(5);
binarySearchTree.add(7);
binarySearchTree.add(9);
binarySearchTree.add(11);
binarySearchTree.add(13);
binarySearchTree.add(15);
binarySearchTree.add(17);
binarySearchTree.print(); // => 10 | 6 14 | 4 8 12 16 | 3 5 7 9 11 13 15 17
binarySearchTree.remove(10); // remove 10, 11 goes up
binarySearchTree.print(); // => 11 | 6 14 | 4 8 12 16 | 3 5 7 9 x 13 15 17
binarySearchTree.remove(12); // remove 12; 13 goes up
binarySearchTree.print(); // => 11 | 6 14 | 4 8 13 16 | 3 5 7 9 x x 15 17
console.log('tree is balanced is true:', binarySearchTree.isBalanced()); // => true
console.log('tree is balanced optimized is true:', binarySearchTree.isBalancedOptimized()); // => true
binarySearchTree.remove(13); // remove 13, 13 has no children so nothing changes
binarySearchTree.print(); // => 11 | 6 14 | 4 8 x 16 | 3 5 7 9 x x 15 17
console.log('tree is balanced is false:', binarySearchTree.isBalanced()); // => false
console.log('tree is balanced optimized is false:', binarySearchTree.isBalancedOptimized()); // => false
No comments:
Write Comments